27/4/2015

NetworkTarget

&» freedesktop.org

www/ Software/ systemd/ NetworkTarget Edit| | Page History | | Repo Info

Back to systemd

Running Services After the Network is up

So you have configured your service to run after network. target but it still gets run before your network is up? And now you are wondering
why that is and what you can do about it?

LSB init scripts know the $network facility. As this facility is defined only very unprecisely people tend to have different ideas what it is
supposed to mean. Here are a couple of ideas people came up with so far:

The network management software is up

All "configured" network interfaces are up and an IP address has been assigned to each

All discovered local hardware interfaces that have a link beat have an IP address assigned, independently whether there is actually any
explicit local configuration for them

The network has been set up precisely to the level that a DNS server is reachable

Similar, but some specific site-specific server is reachable

Similar, but "the Internet" is reachable

All "configured" ethernet devices are up, but all "configured" PPP links which are supposed to also start at boot don't have to be yet

A certain "profile" is enabled and some condition of the above holds. If another "profile" is enabled a different condition would have to
be checked

Based on the location of the system a different set of configuration should be up or checked for

At least one global IPv4 address is configured

At least one global IPv6 address 1s configured

At least one global IPv4 or IPv6 address is configured

And so on and so on. All these are valid approaches to the question "When is the network up?", but none of them would be useful to be good

http://www freedesktop.org/wiki/Software/systemd/NetworkTarget/ 1/4

http://www.freedesktop.org/wiki/Software/systemd/
https://secure.freedesktop.org/cgit/www/
http://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/facilname.html
http://www.freedesktop.org/wiki/
http://www.freedesktop.org/wiki/Software/
https://secure.freedesktop.org/cgit/www/log/Software/systemd/NetworkTarget.mdwn
https://secure.freedesktop.org/write/www/ikiwiki.cgi?page=Software%2Fsystemd%2FNetworkTarget&do=edit
http://www.freedesktop.org/wiki/Software/systemd/

27/4/2015 NetworkTarget

as generic default.

Modern networking tends to be highly dynamic: machines are moved between networks, network configuration changes, hardware is added
and removed, virtual networks are set up, reconfigured and shut down again. Network connectivity is not unconditionally and continuously
available, and a machine is connected to different networks at different times. This is particularly true for mobile hardware such as handsets,
tablets and laptops, but also for embedded and servers. Software that is written under the assumption that network connectivity is available
continuously and never changes is hence not up-to-date with modern standards. Well-written software should be able to handle dynamic
configuration changes. It should react to changing network configuration and make the best of it. If it cannot reach a server it must retry. If
network configuration connectivity is lost it must react. Reacting to local network configuration changes in daemon code is not particularly
hard. In fact many well-known network-facing services running on Linux have been doing this for decades. A service written like this is
robust, can be started at any time, and will always do the best of the circumstances it is running in.

$network is a mechanism that is required only to deal with software that assumes continuous network is available (i.e. of the simple non-well-
written kind). Which facet of it it requires is undefined. An IMAP server might just require a certain IP to be assigned so that it can listen on
it. OTOH a network file system client might need DNS up, and the service to contact up, as well. What precisely is required for $network is
not obvious and can be different things depending on local configuration.

A robust system boots up independently of external services. More specifically, if a network DHCP server does not react this should not slow
down boot on most setups, but only for those where network connectivity is strictly needed (for example, because the host actually boots
from the network).

Concepts in systemd

In systemd, three target units take the role of $network:

e network.target has very little meaning during start-up. It only indicates that the network management stack is up after it has been
reached. Whether any network interfaces are already configured when it is reached is undefined. It's primary purpose is for ordering
things properly at shutdown: since the shutdown ordering of units in systemd is the reverse of the startup ordering, any unit that is
order After=network.target can be sure that it is stopped before the network is shut down if the system is powered off. This allows
services to cleanly terminate connections before going down, instead of abruptly losing connectivity for ongoing connections, leaving
them in an undefined state. Note that network.target is a passive unit: you cannot start it directly and it is not pulled in by any services
that want to make use of the network. Instead, it is pulled in by the network management service itself. Services using the network
should hence simply place an After=network.target dependency in their unit files, and avoid any Wants=network.target or even
Requires=network.target.

e network-online.target is a target that actively waits until the nework is "up", where the definition of "up" is defined by the network
management software. Usually it indicates a configured, routable IP address of some kind. It's primary purpose is to actively delay

http://lwww freedesktop.org/wiki/Software/systemd/NetworkTarget/

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

27/4/2015

NetworkTarget

activation of services until the network is set up. It is an active target, meaning that is may be pulled in by the services requiring the
network to be up, but is not pulled in by the network management service itself. By default all remote mounts defined in /etc/fstab
pull this service in, in order to make sure the network is up before it is attempted to connect to a network share. Note that normally, if
no service requires it, and if not remote mount point is configured this target is not pulled into the boot, thus avoiding any delays
during boot should the network not be available. It is strongly recommended not to pull in this target too liberally: for example network
server software should generally not pull this in (since server software generally is happy to accept local connections even before any
routable network interface is up), it's primary purpose is network client software that cannot operate without network.

network-pre.target is a target that may be used to order services before any network interface is configured. It's primary purpose is for
usage with firewall services that want to establish a firewall before any network interface is up. It's a passive unit: you cannot start it
directly and it is not pulled in by the the network management service, but by the service that wants to run before it. Network
management services hence should set After=network-pre.target, but avoid any Wants=network-pre.target or even Requires=network-
pre.target. Services that want to be run before the network 1s configured should place Before=network-pre.target and also set
Wants=network-pre.target to pull it in. This way, unless there's actually a service that needs to be ordered before the network is up the
target is not pulled in, hence avoiding any unnecessary synchronization point.

Whenever systemd encounters a $network dependency in LSB headers of init scripts it will translate this to a Wants= and After= dependency
on network-online.target hence staying relatively close to traditional LSB behaviour.

For more details, see the systemd.special(7) man page.

Cut the crap! How do I make network.target work for me?

Well, that depends on your setup and the services you plan to run after it (see above). Many network management solutions provide a way to
unconditionally pull in network-online.target, and thus upgrading the effect of network.target to the effect of network-online.target.

If you use NetworkManager you can do this by enabling NetworkManager-wait-online.service:

systemctl enable NetworkManager-wait-online.service

If you use systemd-networkd you can do this by enabling systemd-networkd-wait-online.service:

systemctl enable systemd-networkd-wait-online.service

This will ensure that all configured network devices are up and have an IP address assigned before boot continues. This service will time out
after 90s. Enabling this service might considerably delay your boot even if the timeout is not reached. Both services are disabled by default.

http://www freedesktop.org/wiki/Software/systemd/NetworkTarget/ 3/4

http://www.freedesktop.org/software/systemd/man/systemd.special.html
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

27/4/2015 NetworkTarget

Alternatively, you can change your service that needs the network to be up, to include After=network-online.target and Wants=network-
online.target.

What does this mean for me, a Developer?

If you are a developer, instead of wondering what to do about network.target, please just fix your program to be friendly to dynamically
changing network configuration. That way you will make your users happy because things just start to work, and you will get fewer bug
reports as your stuff is just rock solid. You also make the boot faster for your users, as they don't have to delay arbitrary services for the
network anymore (which is particularly annoying for folks with slow address assignment replies from a DHCP server).

Here are a couple of possible approaches:

e Watch rtnetlink and react properly to network configuration changes as they happen. This is usually the nicest solution, but not always
the easiest.

e [fyou write a server: listen on [::], [::1], 0.0.0.0 and 127.0.0.1 only. These pseudo-addresses are unconditionally available. If you
always bind to these addresses you will have code that doesn't have to react to network changes, as all you listen on is catch-all and
private addresses.

e [fyou write a server: if you want to listen on other, explicitly configured addresses, consider using the IP_FREEBIND sockopt
functionality of the Linux kernel. This allows your code to bind to an address even if it is not actually (yet or ever) configured locally.
This also makes your code robust towards network configuration changes.

Last edited Wed Jun 11 06:22:03 2014

http://www freedesktop.org/wiki/Software/systemd/NetworkTarget/ 4/4

https://www.kernel.org/doc/man-pages/online/pages/man7/ip.7.html
https://www.kernel.org/doc/man-pages/online/pages/man7/rtnetlink.7.html

